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ABSTRACT

The b-barrel outer membrane proteins constitute one
of the two known structural classes of membrane
proteins. Whereas there are several different web-
based predictors for a-helical membrane proteins,
currently there is no freely available prediction
method for b-barrel membrane proteins, at least with
an acceptable level of accuracy. We present here a
web server (PRED-TMBB, http://bioinformatics.
biol.uoa.gr/PRED-TMBB) which is capable of predict-
ing the transmembrane strands and the topology of
b-barrel outer membrane proteins of Gram-negative
bacteria. The method is based on a Hidden Markov
Model, trainedaccording to theConditionalMaximum
Likelihood criterion. Themodel was retrained and the
training set now includes 16 non-homologous outer
membrane proteins with structures known at atomic
resolution. The user may submit one sequence at a
time and has the option of choosing between three
different decoding methods. The server reports the
predicted topology of a given protein, a score indicat-
ing the probability of the protein being an outer mem-
brane b-barrel protein, posterior probabilities for the
transmembrane strand prediction and a graphical
representation of the assumed position of the trans-
membrane strands with respect to the lipid bilayer.

INTRODUCTION

Integral membrane proteins are divided into two distinct struc-
tural classes, the a-helical membrane proteins and the b-barrel
membrane proteins. The a-helical membrane proteins are
found mostly in the cell membranes of both prokaryotic
and eukaryotic organisms, performing a variety of biologically
important functions. Their membrane spanning regions form

a-helices, which consist mainly of hydrophobic residues (1).
A variety of computational techniques have been proposed for
the prediction of the transmembrane segments of a-helical
membrane proteins, with high levels of accuracy and preci-
sion. Furthermore, there are several freely accessible web
servers for the prediction of a-helical membrane spanning
segments. On the other hand, the members of the b-barrel
membrane protein class are located in the outer membrane
of Gram-negative bacteria, and presumably in the outer mem-
brane of chloroplasts and mitochondria. These proteins have
membrane spanning segments formed by antiparallel b-
strands, creating a channel in the form of a barrel that
spans the outer membrane (2). It is of great importance to
possess powerful, freely available tools to predict the trans-
membrane topology since only a few outer membrane proteins
have known three-dimensional structures. During the last few
years, some methods have been proposed for the prediction of
beta-barrel outer membrane proteins based on statistical ana-
lyses (3,4), neural networks (5,6) and Hidden Markov Models
(HMMs) (7,8), but so far none of them has been freely avail-
able to the scientific community, with the exception of some
older methods based on neural networks trained on smaller
datasets (5,6), which demonstrated moderate performance. In
this work, we present a web server based on a Hidden Markov
Model capable of predicting the transmembrane topology of
b-barrel outer membrane proteins. The model is retrained in
order to include newly solved three-dimensional structures.
The application offers the choice between three different
decoding algorithms, and additionally outputs a graphical
representation of the assumed topology with respect to the
membrane.

MATERIALS AND METHODS

PRED-TMBB is based on a Hidden Markov Model (9), a
probabilistic model consisting of several states connected
by means of the transition probabilities. The architecture of
the model is designed to fit as much as possible to the
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limitations imposed by the known structures. For training, we
used Conditional Maximum Likelihood (CML) training for
labelled data, as proposed by Krogh (10). This kind of training,
often referred to as discriminating training, seeks to maximize
the probability of the correct prediction rather than the prob-
ability of the sequences, given the model. The parameters of
the model (transition and emission probabilities) are updated
simultaneously, using the gradients of the likelihood function
as described in (11), and the training process terminates when
the likelihood does not increase beyond a pre-specified thresh-
old. To reduce the number of the free parameters of the model,
and thus improve the generalization capability, states expected
to have the same emission probabilities were tied together.
Furthermore, to avoid overfitting, the iterations started from
emission probabilities corresponding to the initial amino acid
frequencies observed in the known protein structures, and
small pseudocounts were added at each step. For decoding
we implemented three well-known algorithms, the standard
Viterbi algorithm (9), the N-best algorithm (12) and posterior
decoding using a dynamic programming algorithm. The com-
plete details of the model, the training and the decoding pro-
cedure are described elsewhere (13).

The model was retrained in order to include some recently
solved three-dimensional structures of b-barrel outer mem-
brane proteins deposited in the Protein Data Bank (PDB)
(14). The total number of sequences in the training set is
16, all belonging to the fold ‘beta-barrel transmembrane pro-
teins’ of the SCOP database (Table 1) (15). The sequences
have been submitted to a redundancy check, removing chains
with a sequence identity above some threshold. We consider
two sequences as being homologues if they possess identical
residues >30% in a pairwise alignment in a sequence longer
than 80 residues. For the pairwise local alignment we used
BlastP (16) with default parameters, and the homologous
sequences were removed by implementing Algorithm 2
from Hobohm et al. (17). For training and testing the
model, we considered only the part of the beta-strand that
is inserted in the lipid bilayer, and not the whole beta-strand,
which in some cases extends far away from the membrane.
For the transmembrane strand predictions, we report the well-
known SOV (measure of the segment’s overlap), which is

considered to be the most reliable measure for evaluating the
performance of secondary structure prediction methods (18).
We also report the total number of correctly predicted topol-
ogies, i.e. when both the strands’ localization and the loops’
orientation have been predicted correctly. As measures of the
per-residue accuracy, we report here both the total fraction of
the correctly predicted residues (Qb) in a two-state model
(transmembrane versus non-transmembrane) and the well-
known Matthews Correlation Coefficient (Cb) (19). For rea-
sons of fair comparison with other existing methods, all
measures of performance were evaluated against the manu-
ally derived annotations for the transmembrane segments
used by our team for training (13), and also against the
annotations of the transmembrane strands as deposited in
the PDB, even though, in some cases, these clearly extend
beyond the lipid bilayer. Finally, the model produces a score
used to discriminate b-barrel membrane proteins from
globular ones (13). This score is just the negative log-
likelihood of the sequence given the model, normalized by
dividing by the sequence length. Proteins producing a score
lower than a predefined threshold (see below) are considered
to be beta-barrel membrane proteins.

RESULTS

The performance of the model is summarized in Table 2,
where we list the results obtained by comparing the three
different decoding algorithms. We note that the posterior
decoding method using the dynamic programming algorithm
to locate the transmembrane strands performs marginally
better than the Viterbi or the N-best algorithm, as already
noted in (20), and should perhaps be preferred. In the self-
consistency test (when the model is trained and tested on the
whole dataset at the same time) the percentage of correctly
predicted residues is 92.2%, the correlation coefficient = 0.84
and SOV = 0.94. When we tested the model using the

Table 1. The non-redundant dataset of 16 outer membrane proteins used for

training the model

Protein
name

Number of
b-strands

PDB
code

Organism

OmpA 8 1QJP E.coli
OmpX 8 1QJ8 E.coli
OmpT 10 1I78 E.coli
OpcA 10 1K24 Neisseria meningitidis
OmpLA 12 1QD5 E.coli
Omp32 16 1E54 Comamonas acidovorans
OmpF 16 2OMF E.coli
Porin 16 2POR Rhodobacter capsulatus
Porin 16 1PRN Rhodobacter blasticus
Sucrose porin 18 1A0S Salmonella typhimurium
Maltoporin 18 2MPR S.typhimurium
FepA 22 1FEP E.coli
NspA 8 1P4T N.meningitidis
BtuB 22 1NQE E.coli
FhuA 22 2FCP E.coli
FecA 22 1KMO E.coli

Table 2. Overall measures of accuracy obtained in the self-consistency and

jackknife tests for the three different decoding algorithms

Decoding method Qb Cb SOV TOP TOPs

Self-consistency
Viterbi 92.6%

(79.9%)
0.84 (0.62) 0.93 (0.86) 12 (12) 13 (13)

N-Best 92.8%
(80.0%)

0.85 (0.62) 0.94 (0.86) 12 (12) 14 (14)

Posterior 92.2%
(80.1%)

0.84 (0.62) 0.94 (0.86) 12 (12) 15 (15)

Jacknife
Viterbi 86.0%

(75.6%)
0.70 (0.53) 0.82 (0.76) 9 (10) 12 (12)

N-Best 86.0%
(75.6%)

0.70 (0.53) 0.82 (0.76) 9 (10) 12 (12)

Posterior 87.5%
(77.0%)

0.74 (0.56) 0.85 (0.80) 8 (8) 11 (11)

Qb: percentage of correctly predicted residues (19). Cb: Matthews Correlation
Coefficient (19). SOV: Segment Overlap measure (18). TOP: proteins with
correctly predicted topologies (strand localization and orientation of the
loops). TOPs: proteins with correctly predicted topologies, with the inclusion
of shifted strand predictions. Values in parentheses correspond to the measures
of accuracy obtained when using, as observed, the annotations for the trans-
membrane strands taken from PDB [see also (13)].
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jackknife procedure (i.e. removing a protein from the training
set, training the model with the remaining proteins and per-
forming the test on the protein removed), the percentage of
correctly predicted residues is 87.5%, the correlation
coefficient = 0.74 and SOV = 0.85. The number of correctly
predicted topologies is 12 (15 when counting 3 strands that
were predicted misplaced) in the self-consistency test and 8
(11 when counting 3 strands that were predicted misplaced)
in the jackknife test. All results reported here are computed
according to the posterior decoding method. The results in
the jackknife test clearly outperform the original version of
the algorithm (13), and also all other methods reported in the
literature (6–8), even though we use only single-sequence
information. In Table 3, we also report the prediction per-
formance of two other publicly available predictors on the
same dataset. B2TMPRED is the neural network developed
in (6), using evolutionary information derived from multiple
alignments, and TM-BETA is a newly developed neural
network method (21) using single-sequence information.

PRED-TMBB, even in the jackknife test reported in Table 2,
performs significantly better, although the majority of the
proteins in the dataset were also present in the sets used for
training these methods. The superiority of our method is due
to the model design and the training scheme, and also in part

Table 3. Overall measures of the accuracy of PRED-TMBB and comparison

with other available predictors

Method Qb Cb SOV TOP TOPs

PRED-TMBB 92.2% (80.1%) 0.84 (0.62) 0.94 (0.86) 12 (12) 15 (15)
B2TMPREDa 78.3% (80.1%) 0.57 (0.60) 0.69 (0.73) 4c (4c) 5c (5c)
TM-BETAb 71.9% (72.6%) 0.44 (0.45) 0.62 (0.63) 1c (1c) 1c (1c)

For definitions of accuracy measures see Table 2.
aB2TMPRED is available at http://gpcr.biocomp.unibo.it/cgi/predictors/outer/
pred_outercgi.cgi.
bTM-BETA is available at http://psfs.cbrc.jp/tmbeta-net/.
cThese predictors do not report the full topology but only the location of the
transmembrane strands.

Figure 1. Output of the prediction obtained from PRED-TMBB for the OmpX of E.coli. (A) The prediction of the transmembrane strands according to posterior
decoding. (B) Plot of the posterior probabilities for the transmembrane strands, along the sequence. (C) Graphical representation of the predicted topology with
respect to the lipid bilayer.
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to the complete training set, which is the largest non-redun-
dant set reported in the literature so far. We speculate that
other, more refined methods, such as those reported in (7) or
(8), would perform comparable to PRED-TMBB, but they
are not publicly available. Furthermore, PRED-TMBB is the
only available method which is capable of not only predict-
ing the membrane spanning strands but also discriminating
beta-barrel membrane proteins. At a fixed score threshold of
2.965, the model correctly discriminated 88% of a non-
redundant set of 133 well-annotated outer membrane proteins
and 89% of a set of 1100 globular proteins from PDB-Select
[for details on these datasets, refer to (13)]. Using the same
threshold, it correctly predicted 95% of the 149 beta-barrel
membrane proteins deposited in TCDB (22) and 73% of a
non-redundant set of 82 alpha-helical membrane proteins
with structures known at atomic resolution. Clearly, the
model discriminates, with the highest level of accuracy
and precision reported so far, beta-barrel membrane proteins
from globular ones. However, when it comes to alpha-helical
membrane proteins, more reliable predictors already exist
(23), and their use should be preferred to filtering completely
unknown sequences or screening large datasets (13).

THE SERVER

On the initial page, the user may submit a sequence in FASTA
format and has the option of choosing between the three dif-
ferent decoding methods currently available. Decoding can be
performed using the N-best algorithm, the standard Viterbi
algorithm or ‘a posteriori’ with the aid of a dynamic program-
ming algorithm. The three alternative algorithms can be run
simultaneously, but this may slow down the server’s reporting
time. We should mention here that although the accuracy of
PRED-TMBB is not significantly affected by the existence of a
signal peptide, the presence of a signal peptide is a strong
indication of the protein’s localization in the outer membrane.
Thus, when it comes to precursor sequences such as those of
genome projects, this aspect should also be considered. The
final output consists of the prediction for the transmembrane
strands (Figure 1). Optionally, the user may obtain a graphical
plot showing the posterior probabilities in a three-state mode
(extracellular, periplasmic and transmembrane), which may be
useful in the case of ambiguously defined topologies. The
application also returns the score used for discrimination pur-
poses, thus helping the user to identify possible b-barrel outer
membrane proteins. Another useful feature of the application
is the option to produce (after the decoding process) a graphi-
cal representation showing the relative position of the pre-
dicted transmembrane strands with respect to the lipid
bilayer. Such a depiction might be useful for presentation
and publication purposes.

CONCLUSIONS

We present here a web sever based on a Hidden Markov Model
for the prediction of the transmembrane b-strands of the outer
membrane proteins of Gram-negative bacteria. To our know-
ledge, this is the first time that such a web server accessible to
the public has been made. Furthermore, the method performs
better than any previously published method and is the only

method not only able to predict the strands’ localization and
the location of the loops (periplasmic/extracellular), but also
capable of discriminating beta-barrel membrane proteins from
globular ones. The server outputs the prediction of the trans-
membrane b-strands, posterior probabilities for the prediction,
the discrimination score and a graphical depiction of the pro-
tein’s orientation with respect to the lipid bilayer, thus making
this server a unique and complete approach for the prediction
of the transmembrane topology of outer membrane proteins.
The Hidden Markov Model parameters will be updated on a
regular basis whenever new crystallographically solved struc-
tures become available, and we plan to enrich the application
with additional new services in the future.
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